Dipole force free optical control and cooling of nanofiber trapped atoms.

نویسندگان

  • Christoffer Østfeldt
  • Jean-Baptiste S Béguin
  • Freja T Pedersen
  • Eugene S Polzik
  • Jörg H Müller
  • Jürgen Appel
چکیده

The evanescent field surrounding nanoscale optical waveguides offers an efficient interface between light and mesoscopic ensembles of neutral atoms. However, the thermal motion of trapped atoms, combined with the strong radial gradients of the guided light, leads to a time-modulated coupling between atoms and the light mode, thus giving rise to additional noise and motional dephasing of collective states. Here, we present a dipole force free scheme for coupling of the radial motional states, utilizing the strong intensity gradient of the guided mode and demonstrate all-optical coupling of the cesium hyperfine ground states and motional sideband transitions. We utilize this to prolong the trap lifetime of an atomic ensemble by Raman sideband cooling of the radial motion which, to the best of our knowledge, has not been demonstrated in nano-optical structures previously. This Letter points towards full and independent control of internal and external atomic degrees of freedom using guided light modes only.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State-insensitive cooling and trapping of single atoms in an optical cavity.

Single cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap, with observed lifetimes of 2-3 s. Trapped atoms are observed continuously via transmission of a strongly coupled probe beam, with individual events lasting approximately 1 s. The loss of successive atoms from the trap N>/=3-->2-->1-->0 is thereby monitored in real time...

متن کامل

Sympathetic cooling by collisions with ultracold rare gas atoms, and recent progress in optical Stark deceleration.

We propose a general scheme for sympathetic cooling of molecules to microK temperatures on a timescale of seconds. Experimental parameters have been estimated from theory, which indicate the viability of the scheme. This method, which is particularly suited to optical Stark deceleration, utilises ultracold, laser cooled metastable rare gas atoms quenched to their ground state as collision partn...

متن کامل

Coherence properties of nanofiber-trapped cesium atoms.

We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ∼ 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T(2)(*) = 0.6 ms and an irreversible dephasing time of T(2)(') =...

متن کامل

Eliminating light shifts in single-atom optical traps

Microscopically controlled neutral atoms in optical tweezers and lattices have led to exciting advances in the study of quantum information and quantum many-body systems. The light shifts of atomic levels from the trapping potential in these systems can result in detrimental effects such as fluctuating dipole force heating, inhomogeneous detunings, and inhibition of laser cooling, which limits ...

متن کامل

Electromagnetic trapping of cold atoms

This review describes the methods of trapping cold atoms in electromagnetic fields and in the combined electromagnetic and gravity fields. We discuss first the basic types of the dipole radiation forces used for cooling and trapping atoms in the laser fields. We outline next the fundamentals of the laser cooling of atoms and classify the temperature limits for basic laser cooling processes. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics letters

دوره 42 21  شماره 

صفحات  -

تاریخ انتشار 2017